2: Searching

of the hashing algorithm. That is, each hashing method can be used
with each of the collision resolution methods. In this section we discuss
the collision resolution methods shown in Figure 2-13.

Before we discuss the collision resolution methods, however, we
need to cover two more concepts. -Because of the nature of hashing
algorithros, it is necessary to have some empty elements in a list at-all
times. In fact, we define a full list as a list in which all elements except
one contain data. Asa rule of thumb, a hashed list should not be allowed
to become more than 7 506 full. This leads us to our first concept, load
factor. The load facter of a hashed list is the number of elements in
the list divided by the number of physical elements allocated for the
list expressed as a percentage. Traditionally, load factor is assigned the
symbol aipha (o). The formula in which k represents the number of

. filled elements in the list and nrepresents the total number of elements

allocated to the list is:

k
o = = X 100

=}

Because there can never be more than n elements in a list, « will
always be a percentage.

Asdataareaddedtoa list and collisions are resolved, some hashing
algorithms tend to cause data to group within the list. This tendency
of data to build up unevenly across a hashed list is known as cluster-
ing. Clustering is a concern because itis usually created by collisions.
If the list contains a high degree of clustering, then the number of
probes to locate an element grows and the processing efficiency of the
Jist is reduced.

Two distinct types of clusters have been identified by computer
scientists. The first, primary clustering occurs when data become
clustered around a home address. Primary clustering is easy toidentify.
Consider for example. the population clusters found in any state. If you

Buckets

Linear
Probe Probe

Fig?ﬁ(>.13 Collision resolution methods

.

¢

54

2: Searching

Linear Probe

Our first collision resolution method is also the simplest.l@l linear
probe, when data cannot be stored in the home address, we resolve
the collision by adding one to the current addre_sE] For example, let’s add
two more elements to the modulo-division method example in Figure
2-10 on page 47. The results are shown in Figure 2-14. When we insert
key 070918, we find an empty element and insert it with no collision.
When we try to insert key 166702, however, we have a collision at
location 002. We try to resolve the collision by adding one to the address
and inserting the new data at location 003. [However, this address is
also filled. We tiofesg-add another one to the addresgland this time
find an empty location] 004, where we can place the new data.

As an alternafive to a simple linear probe, we can alternately add
one, subtract two, add three, subtract four, and so forth until an empty
element is located. In either method, the code for the linear probe must
ensure that the next collision resolution address lies within the bound-
aries of the list. Thus, if a key hashes to the last location in the list,
adding one must produce the address of the first element of the list.
On the contrary, if the key hashes to the first element of the list, sub-
tracting one must produce the address of the last element in the list.

Linear probes have two advantages. First they are quite simple to
implement. Second, data tend to remain near their home address. This
can be important in implementations where being near the home ad-
dress is important, such as when we hash to a disk address. On the
other hand, it tends to produce primary clustering. Additionally, they
tend to make the search algorithm more complex especially after data
have been deleted.

|
001} | 379452 Mary Dodd
[002] | 070918 | Sarah Trapp
[003] [121267 | Bryan Devaux (;ﬂProbeA
First insert; [004] | 166702 | Harry Eagle Probe 2
Ne collision [0 05]
070918 " [ooel
[007]
166702 [008] | 378845 | John Carver
Second Insert: [009]
{306] | 160252 | Tuan Ngo
[307] | 045128 | Shouli Feldman |

Figure 2-14 Linear probe collision resolution

R e s I o

s

o w w»n

2-4: Collision Resolution 8

Quadratic Probe

\

ierandom

Table 2-2 Quadratjcgcollision resolution incrementsy | 7L
W 0 ohts 2o n _M&A +0*#&Mfz" J7f
| Bt s

ion Resolution

Primary clustering, although not necessarily secondary clustering, can
be eliminated by adding a value other than one to the current address.
One easily implemented miethod is to use the quadratic probe. In the
quadratic probe, the increment is the collision probe number squared.
Thus. for the first probe, we add 1% for the second collision probe, we
add 22; for the third collision probe we add 3% and so forth until we
either find an empty element or we exhaust the possible elements. To
ensure that we don’t run off the end of the address list, we use the
modulo of the quadratic sum for the new address. This sequence is
seen in Table 2-2, which for simplicity assumes a collision at location
1 and a list size of 100.

A potential disadvantage of the quadratic probe is the time required
to square the probe number. We can eliminate the multiply however by
using an increment factor that increases by two each probe. Adding the
increment factor to the previous increment gives us the next increment,
which as you can see by the last column in Table 2-2 is the equivalent
of the probe squared.

The quadratic probe has one limitation: It is not possible to generate
a new address for every element in the list. For example, in our example
in Table 2-2, only 42 of the probes will generate unique addresses. The
other 58 locations in the list will not be probed. To see two examples
of duplicate addresses in Table 2-2, extend it to 16 probes. The solution
to the problem is to use a list size that is a prime number. When the
list size is a prime number, at least half of the list is reachable, which

is a reasonable number.

The last two open addressing methods are collectively known as double
hashing. In each method, rather than using an arithmetic probe func-
tion, the address is rehashed. As will be apparent during their discus-

sion, both methods prevent primary clustering.
The first method uses a pseudorandom number to resolve the

|, '

Next{

Probe | Collision | Probe? and New ’|ncri3ent

- MNumber | location | Increment | Address Fadtpr tncrement
R 12=1 02] 1

2 2 2 =4 06 3 4

3 6 ©B1=9 15 3 -3

4 15 4= 16 31 7 16

5 31 5=25 | 56 9 15

6 56 62=36 | 92 1 5

7 72249 | 41 13 14

'6 3

hY

2: Searching

e e

Key Offset

collision. We saw the pseudorandom number generator as a hashing

- method in Pseudorandom Method on page 50. We now use it as a
collision resolution method. In this case, rather than using the key as

a factor in the random number calculation, we use the address. Con-
sider the collision we created in Figure 2-14 on page 54. We now resolve
the collision using the following pseudorandom number generator

where ais 3 and cis — 1.

.‘ dlo listSize +°1
1)) Modulo: 307 .+ 1

In this example, the collision is resolved by placing the new data”
in element 006 (Figure 2-15). We have to keep the coefficients: small to
fit our example. A better set of factors would use a large prime number
for a, such as 1,663. . :
While pseudorandom numbers are a relatively simple solution, they
do have one significant limitation. Once a collision occurs, there is only
one collision resolution path through the list that is followed by all |
keys. (This deficiency also occurs in the linear and quadratic probes.)
Because this can create significant secondary clustering, we should
look for a method that produces different collision paths for different

keys.

Key offset is a double hashing method that produces different collision
paths for different keys. Whereas the pseudorandom number generator

[001] | 379452 |Mary Dodd
[002] | 070918 |Sarah Trapp
[003] | 121267 |Bryan Devaux

Firstinsert: [004]
070918 [006] | 166702 |Harry Eagle_
2 [o07] N

. PETYYrE pseudorandom
166702 : [008] | 378845 |john Carve{ y=3x-1
Second Insert: (009}
Collision -

(306] | 160252 |Tuan Ngo
{307] | 045128 IShouli Feldman

Figure 2-15 Pseudorandom collision resolution

3PS
.] ——

2-4: Collision Resolution 57

produces a new address as a function of the previous address, key
offset calculates the new address as 2 function of the old address and
the key. One of the simplest versions simply adds the quotient of the
key divided by the list size to the address to determine the next collision-
resolution address as shown in the formula below.

e A G k.

e

-

JIPV—) :
offSet ="|key / 1istSize| . : o :
address = ({offset+:01d address) modulo jistsize) + 1%
S y Y

For example, when the key is 166702 and the list size is 307, us
the modulo-division hashing ‘method we generate an address of 2. As
shown in Figure 2-15, this synonym of 070918 produces a collision at
address 2. Using key offset to calculate the next address, we get 239
as shown below.

|166702 7-307] = 543
((543 + 002) modulo 307) + 1= 239

§ offSet
address

If 239 were also a collision, we would repeat the process to locaie
the next address as shown below.

{166702 / 307 = 543

offSet 4
({543 + 239) modulo 307) + 1 =169

address

To really see the effect of key offset, we need to calculate several
different keys, all hashing to the same home address. In Table 2-3 we
calculate the next two collision probe addresses for three keys that
collide at address 002.

Note that each key resolves its collision at a different address for

both the first and second probes.

Linked List A major disadvantage to open addressing is that each collision resolu-
RESO{UﬁOH tion increases the probability of future collisions. This disadvantage is
eliminated in the second approach to collision resolution, linked lists.
A linked list is an ordered collection of data in which each element

Table 2-3 Key-offset examples

~

2: Searching N

Bucket Hashing

contains the location of the next element. For example, in Figure 2-16,
array element 002, Sarah Trapp, contains a pointer to the next element,
Harry Eagle, which in turn contains a pointer to the third element,
Chris Walljasper. We will study the maintenance of linked lists in the
next chapter. .

Linked list resolution uses a separate area to store collisions and
chains all synonyms together in a linked list. It uses two storage areas,
the prime area and the overflow area. Each element in the prime
area contains an additional field, a link head-pointer to a linked list of
overflow data in the overflow area. When a collision occurs, one element
is stored in the prime area and chained to its corresponding linked list
in the overflow area. While the overflow area can be any data structure,
it is typically implemented as a linked list in dynamic memory. Figure
2-16 shows the linked list from Figure 2-15 with the three synonyms
for address 002.

While the linked list data can be stored in any order, a LIFO sequence
or akey sequence is the most common. The LIFO sequence is the fastest
for inserts because the linked list does not have to be scanned to insert
the data. The element being inserted into overflow is simply placed at
the beginning of the linked list and linked to the node in the prime
area. Key sequenced lists, with the key in the prime area being the
smallest, provide for faster search retrieval. Which one is used depends
on the application.

Another approach to handling the problem of collision is to hash to
buckets, nodes that accommodate multipie data occurrences. Because

[001] | 379452 Mary Dodd
[002] | 070918 [Sarsh Trapp ——>{ 166702 [Harry Eagle] |]
(003} | 121267 [Bryan Devaux
{oo4] +
[005)

[006]
[007]

]
[572556 | Chris Waljasper N

[306] | 160252 {Tuan Ngo !

[@ 045128 |Shouli Feldman D<

re 2-18 Linked list collision resolution

2-4: Collision Resolution TN

— B L R SR

a bucket can hold multiple pieces of data, collision are postponed until 1
the bucket is full. Assume for example, that in our Figure 2-16 list, 1
each address is big enough to hold data about three employees. Under E
this assumption, there would not be a collision until we tried to add a

fourth employee to an address. There are two problems with this con-
cept. First, it uses significantly more space because many of the buckets
will be empty or partialty empty at any given time. Second, it does not
completely resolve the collision problem. At some point, a collision will
occur and need to be resolved. When it does, a typical approach is to
use a linear probe, assuming that the next element will have some
empty space. Figure 2-17 demonstrates the bucket approach.

Study the second bucket in Figure 2-17. Note that it contains the N
data for three entries, all of which hashed to address 2. We will not get
a collision until the fourth key, 572556 in our example, is inserted into
the list. When a collision finally occurs, that is when the bucket if full,

. any of the collision resolution methods may be used. For example, in
Figure 2-17, when we inserted 572556 a collision occurred because
bucket 2 was full. We then used a linear probe to insert it into location
3. Also note that for efficiency, we have placed the keys within a bucket
in ascending key sequence.

There are several approaches to resolving collisions. As we saw
with the hashing methods, a complex implementation will often use le
multiple. For example, one large database implementation hashes to 1c-
a bucket. If the bucket is full, it uses a set number of linear probes, 18-

379452 |Mary Dodd ‘
Bucket 24 -
[001] 1 i

é nt !.
—
B k.t 070918 |Sarah Tranp | |
i (002} } P [166702 |Harry Eagle

367173 |Ann Georgis
121267 |Bryan Devaux

Bucket - ;
foo3] | ™3™ | 572556 | Chris Walljasper
N1

= [linear probe |
- 1 places here i

045128 {Shouli Feldman

Bucket
(3071 | “307

7 Bucket hashing

